
1. Introduction
The Arctic sea ice reaches its minimum state during boreal summer and fall and is also the most susceptible 
to climate forcing during these seasons (e.g., Devasthale et al., 2013; Stroeve et al., 2012). Therefore, it is of 
both scientific and societal importance to understand the predictability of the Arctic sea ice during summer 
and fall seasons and its underlying physical mechanism. Several factors are found to affect the predictability 
skill of the September Arctic sea ice on interannual time scales including the initial states of sea ice, oceans 
and stratosphere in and around the Arctic in the pre-melting seasons (e.g., preceding winter and spring) (see 
a review paper by Guemas et al., 2014 and references therein) and atmospheric teleconnection in summer 
(Baxter et al., 2019; Ding et al., 2014, 2019). For example, Baxter et al. (2019) found a leading tropical-Arctic 
teleconnection during 1979–2017 summers in observations and showed that sea surface temperature (SST) 
cooling over the eastern central tropical Pacific ocean and resulting decreased convection likely drives a 
Rossby wave train toward the Arctic and results in an anomalous high pressure over northeastern Canada 
and Greenland that in turn plays a key role in melting the sea ice in the region. They also argued that this 
“Pacific-Arctic (PARC) teleconnection” pattern was responsible for the observed accelerated Arctic sea ice 
melting from 2007 to 2012. However, Baxter et al.  (2019) also noted that a 1800-year long pre-industrial 
simulation of the Community Earth System Model version 1 (CESM1) can't replicate the observed PARC 
teleconnection and instead simulates a leading coupled pattern that links a warm western and central trop-
ical Pacific SST to an anomalous high pressure over the Pacific side of the Arctic. The discrepancy between 
observations and models is not entirely clear and could possibly be due to either model limitations and/or 
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central tropical Pacific ocean while a decrease over the Maritime Continent. The tropical precipitation 
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anomaly over the Pacific side of the Arctic, resulting in poleward atmospheric heat transport, enhanced 
downward longwave radiation and thus melting of the sea ice. In addition, a good agreement is found with 
the leading tropical-Arctic teleconnection mode in a pre-industrial simulation, supporting the usefulness 
and robustness of the linear response function method.

Plain Language Summary The minimum state of Arctic sea ice in September has 
experienced a drastic decline in the past two decades and is projected to continue to decline in the future 
warming climate. It is of both scientific and societal importance to understand both the year-to-year 
variability and anthropogenic change of the Arctic sea ice and their underlying physical mechanisms. This 
study, via a novel dynamical approach rather than a statistical one, reveals the optimal forcing pattern that 
excites the largest sea ice response in September. Our results will contribute to an improved understanding 
of both the natural variability and anthropogenic change of the September Arctic sea ice in climate model 
simulations.
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a strong contribution of internal variability in the generation of the PARC. A recent study of Bonan and 
Blanchard-Wrigglesworth (2020) cautioned the stationarity of the observed PARC pattern because of the 
short observational record and showed that climate models are able to simulate the observed PARC pattern 
in decadal timescale but not over longer, centennial timescales.

To make progress, there are two possible approaches to help us better understand the sensitivity of Septem-
ber sea ice to remote forcing, including either using longer proxy records in the past centuries and millennia 
to explore the stability of the PARC or examining how sea ice in climate models preferentially responds to 
forcing originating outside the Arctic. In this study, we use a modeling approach and investigate two key 
questions: (a) what is the most excitable mode of the September Arctic sea ice and (b) what is the corre-
sponding most effective remote atmospheric/oceanic forcing in driving this mode of sea ice? A physical 
understanding of the above two questions would help better understand and interpret both the natural var-
iability and anthropogenic change of the September Arctic sea ice in climate model simulations. To address 
the questions, we will make use of a set of q-flux Green's function perturbation experiments and construct 
the linear response function that explicitly and causally links the Arctic sea ice concentration response to 
ocean q-flux forcing. To be discussed later, the linear response function approach is useful in identifying 
a causal relationship between the forcing and response, as compared to conventional statistical methods.

2. Methods and Data
2.1. Linear Response Function

The linear response function (LRF) has proved to be a powerful way for establishing the fundamental forc-
ing-response relationship. A dynamical climate system can be formulated as (Palmer, 1999):

  ,x Lx Af (1)

where x denotes the response in state variables in the climate system, f  represents the external forcing, L is 
the LRF that represents the dynamical climate system response to the forcing and is a square matrix, and A 
works to bridge the forcing to the response and could be a non-square matrix if the forcing and response are 
different variables and have different spatial coverage. Since we focus on the equilibrium response, x 0 
and Equation 1 can be written as

    .1 1A L f x (2)

We define  L1L A  and L plays a similar role as the LRF L as in the literature. There are different ways one 
can construct L. Here we adopt the Green's function approach built on a set of forced model experiments 
(to be discussed next) as it is found to be more effective and accurate in reproducing the modeled response 
(F. Liu, Lu, Garuba, Leung, et al., 2018), despite the computational cost of the experiments. Once L is con-
structed from the model experiments following Equation 2, its singular vectors can be used to identify the 
most excitable mode of the response, which exhibits the largest response to forcing and is known as the 
neutral vector, and its most effective forcing (Barsugli & Sardeshmukh, 2002; Goodman & Marshall, 2002; 
Hassanzadeh & Kuang,  2016; Marshall & Molteni,  1993; F. Liu, Lu, Garuba, Harrop, et  al.,  2018; Dong 
et al., 2019; F. Liu, Lu, Garuba, Leung, et al., 2018; Lu et al., 2020). The neutral vector is the right singular 
vector of L associated with the smallest singular number (see detailed discussions in Goodman & Mar-
shall, 2002) and the optimal forcing needed to produce the neutral vector is the left singular vector. For 
example, Hassanzadeh and Kuang (2016) examined the LRF and neutral vector in a dry dynamical core 
and found that the neutral vector is the annular mode pattern, as such assigning dynamical attribute to the 
annular mode, which is often derived from statistical analysis.

2.2. Model Experiments

To construct the LRF that links remote atmospheric/oceanic forcing to Arctic sea ice response, we will make 
use of a set of q-flux perturbation experiments by F. Liu, Lu, Garuba, Leung, et al. (2018). The experiments 
are performed by using the slab ocean model (SOM) configuration of the CESM1.1 (Hurrell et al., 2013) 
which includes the Community Atmosphere Model version 5 (CAM5) (2. 5  longitude by 1. 9  latitude hori-
zontal resolution) and a thermodynamic sea ice component of the Community Ice Code (CICE).
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The control simulation is a 900-year long CESM1.1-SOM forced with 
pre-industrial carbon dioxide levels and solar radiation and specified cli-
matological ocean mixed layer depth h and ocean heat transport q-flux. 
The SST is prognostic and calculated based on the thermal coupling be-
tween the SOM and the atmosphere. For the perturbation experiments, 
97 pairs of localized “warm patch” and “cold patch” simulations are per-
formed, in which an anomalous q-flux patch is added to or subtracted 
from the climatological q-flux. Each q-flux patch anomaly is specified as 
the following

     
 

    
      
   

2 2cos cos
2 2

k k

w w
Q (3)

Within the rectangular patch ( k w,  k w), and zero elsewhere. 
 12Q  W/ 2m  is the amplitude of the q-flux anomaly,   30w  longi-

tude,   12w  latitude, and (k, k) is the atmospheric grid that lies over 
the ocean with k from 0 E to 330 E with an interval of 30  and k from 
67. 26 S to 57. 79 N with an interval of 11. 37 . The q-flux perturbation 
patches are shown in Figure 1. While the computational cost requires a 
trade-off between model complexity and number of perturbation exper-

iments, we note the possible limitation of using a thermodynamic sea ice model in fully capturing the sea 
ice variability. Each q-flux patch perturbation experiment is integrated for 40 years and the average of the 
last 20 years of equilibrium response is used for analysis. In this study, we examine the linear component of 
the response by estimating  ( ) /x x 2 with subscripts  and  denoting the positive and negative forcing 
experiments, respectively, as the linear component approximates the actual response when the forcing is 
small (Gritsun, 2010).

It's worth emphasizing that the LRF method, aided by the design of Green's function-type forcing pertur-
bations, is rooted in dynamics rather than statistics and helps to establish a causal relationship between the 
forcing and response. Although many existing studies have focused on identifying lagged correlation and 
regression relationships between the atmospheric circulation and Arctic sea ice (e.g., Baxter et al., 2019; Bo-
nan & Blanchard-Wrigglesworth, 2020), lagged correlation or regression alone can not indicate the direction 
of causality because the relationship can be biased by autocorrelation, common drivers (so no direct links 
between the two processes), or indirect links via a third process, which are common in climate science (e.g., 
Kretschmer et al., 2016; Runge et al., 2019). Instead forcing is explicit in q-flux perturbation experiments 
and the cause-and-effect relationship can be established using these experiments and the LRF method.

We use the LRF method and q-flux model experiments to explore the most excitable mode of the September 
Arctic sea ice and the optimal forcing that excites the mode. First, we construct L following Equation 2. f  
is the q-flux perturbation forcing and has M J  dimension with M representing the number of grid points 
over the ocean covered by q-flux perturbation patches and J  representing the number of perturbation ex-
periments. x is the linear component of the September Arctic sea ice concentration response and has a 
dimension of N J with N  indicating the number of grid points covering the Northern Hemisphere sea 
ice area. And thus L has M N  dimension, independent of the number of experiments. Since x is not 
necessarily a square matrix, we calculate 1x  using pseudo-inversion as  ( )T 1 Tx x x , where superscript T 
denotes transpose, and Tx x is found to be well-conditioned and invertible in our study. Then we calculate 
the neutral vector as the right singular vector of L associated with the smallest singular number and thus 
maximum response-to-forcing ratio, which reveals the most excitable mode of the September Arctic sea ice. 
We note that the smallest and 2nd smallest singular values are statistically distinguishable at the 95% con-
fidence level based on Jackknife resampling method (not shown). The optimal forcing, which is calculated 
as the left singular vector, indicates the associated most effective q-flux forcing in driving the September 
Arctic sea ice mode. The other variables (Z, such as sea level pressure and precipitation) associated with the 
neutral vector and optimal forcing can be estimated as  1

n nZ Zf f  with subscript n denoting mode number.
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Figure 1. Configuration of q-flux perturbation patches following 
Equation 3. Each ellipse indicates 6 W/ 2m  contour. Note that the actual 
size of the patch is larger than the contoured area and the adjacent patches 
overlap.
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3. Results
Figures 2a and 2b shows the neutral vector for September Arctic sea ice and the corresponding optimal q
-flux forcing. The neutral vector shows that the largest sea ice decrease occurs primarily over the Pacific side 
of the Arctic, that is, the Beaufort Sea, the East Siberia Sea and the Laptev Sea. The corresponding optimal 
q-flux forcing shows complex patchy areas of positive and negative values in the globe, and the patchiness 
is due to the experimental design with a limited number of q-flux patches covering the global ocean (Fig-
ure 1). While positive q-flux anomalies are primarily seen over the central and eastern tropical Pacific ocean, 
the South China Sea, the Philippine Sea, the midlatitude North Pacific ocean, the Labrador Sea and other 
places, negative q-flux anomalies are found over the East China Sea, the subtropical North Pacific ocean 
and others, both acting to drive an overall decrease of the Arctic sea ice in September. As guided by the LRF 
approach, if we were to perform a model experiment by prescribing the optimal q-flux forcing pattern as in 
Figure 2b and ensuring a very small forcing magnitude so that linearity holds, we would expect to obtain a 
September Arctic sea ice melting pattern as revealed by the neutral vector in Figure 2a. However, additional 
model experiments and sensitivity tests would be needed to confirm this forcing-response relationship. The 
optimal q-flux forcing result is also found to be similar in a simple composite analysis based on experiments 
that correspond to a large decline of September Arctic sea ice (not shown).

Because of the coupling of the SOM and atmospheric model, imposed q-flux perturbations outside of the 
Arctic region do not cause Arctic sea ice changes directly but instead lead to changes in SST outside of the 
Arctic region and further changes in precipitation and atmospheric teleconnection, which melts the Arctic 
sea ice. It's thus helpful to show the associated atmospheric fields, including sea level pressure, 200 hPa 
geopotential height, surface temperature and precipitation (Figures  2c–2f), to better reveal the linkage 
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Figure 2. (a) The neutral vector for September Arctic sea ice and (b) its corresponding optimal q-flux forcing. The associated June-July-August (c) sea level 
pressure, (d) 200 hPa geopotential height (Z200), (e) surface temperature (TS), and (f) precipitation (PRECT) with the neutral vector. The neutral vector is 
scaled so that the maximum sea ice loss is 15%. The optimal forcing is scaled by the smallest singular number and also the neutral vector rescaling.
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between the neutral vector and optimal forcing. Considering the lead-lag relationship between the atmos-
pheric fields and September Arctic sea ice, we use June-July-August (JJA) averaged atmospheric fields fol-
lowing previous studies due to their strong correlation (e.g., Bonan & Blanchard-Wrigglesworth, 2020; Ding 
et al., 2019). Both the sea level pressure and 200 hPa geopotential height show a wave train-like pattern over 
the North Pacific ocean toward the Arctic with a positive geopotential height anomaly over the subtropical 
North Pacific as well as the East Siberia Sea, the Beaufort Sea, and northwestern Canada while a negative 
anomaly over the mid-to-high latitude North Pacific ocean. Interesting wave train patterns are also found 
over the Southern Hemisphere, however, they are beyond the scope of this study. For surface temperature 
and precipitation over the ocean, a positive q-flux anomaly is typically associated with a local increase of 
surface temperature and precipitation, for example, over the South China Sea and the Philippine Sea (this 
can be seen in Figure S2 that shows the response in the experiment where a positive q-flux anomaly is 
imposed around 120 E 12 N). However, remote changes in surface temperature and precipitation can also 
be generated (for example, a ridge anomaly and a warming anomaly can be seen over the Pacific side of 
the Arctic in Figure S2). In Figure 2e, in addition to a warming pattern over the Pacific side of the Arctic, 
warming is also seen over the central and eastern tropical Pacific ocean and eastern North Pacific ocean 
while cooling is found over the western North Pacific ocean, which resembles the positive phase of the 
Interdecadal Pacific Oscillation (IPO). Screen and Deser (2019) found a very similar atmospheric telecon-
nection toward the Arctic following the positive IPO phase and argued a faster Arctic sea ice loss during 
the positive IPO phase compared to the negative IPO phase. For precipitation (Figure 2f), interesting pat-
terns are found at lower latitudes, including an increased precipitation over the Philippine Sea extending 
to central subtropical North Pacific ocean as well as the western and central tropical Pacific ocean while a 
decreased precipitation primarily over the Maritime Continent. In terms of the magnitude, overall we find 
that a tropical warming of about 0.1–0.2 K and a tropical precipitation increase of about 0.1–0.2 mm/day are 
linked to a sea ice melting as large as 10%–15% over the Arctic. These numbers are in good agreement with 
the composited extreme sea ice loss results found in Baxter et al. (2019) (see their Figures 11 and 12) despite 
of the different methodology and use of full ocean and sea ice models therein.

To confirm the accuracy of the calculated neutral vector and optimal forcing, we also compute them using 
the sensitivity matrix approach, which doesn't involve matrix inversion (see details in Supporting Informa-
tion). It's found that the results using the sensitivity matrix approach (Figure S1) are largely consistent with 
those using the LRF. The neutral vector shows a similar maximal sea ice loss over the Pacific side of the Arc-
tic although large sea ice loss is also found over the Kara Sea in the sensitivity matrix approach (Figure S1a). 
Similarity is also found in the optimal q-flux forcing (Figure S1b) except that the q-flux forcing is slightly 
smoother in its spatial pattern and has a slightly larger amplitude in the sensitivity matrix approach com-
pared to the LRF approach. The associated atmospheric fields also resemble between the two approaches 
(Figures S1c–S1f), supporting the robustness of the LRF results.

The importance of the positive geopotential height anomaly over the Pacific side of the Arctic has also been 
emphasized in previous observational and modeling studies (e.g., L’Heureux et al., 2008; Baxter et al., 2019; 
Screen and Deser, 2019). For example, L’Heureux et al. (2008) attributed the drastic sea ice loss over the 
western Arctic during 2007 summer to an unusually high Pacific-North American (PNA) index and an as-
sociated strong anticyclone anomaly in this region, which is very similar to our geopotential height anomaly 
(see their Figure 2a). Similarly, a recent study of Z. Liu et al. (2021) also linked the variability and trend of 
western Arctic sea ice during late summer to the PNA pattern. In our case, the high pressure anomaly over 
the Pacific side of the Arctic drives an anomalous poleward heat transport in the region (Figure 3a). This 
leads to a warming of the Arctic atmospheric column (Figure 3b) and an enhanced downward longwave 
radiation at the surface (Figure 3c), particularly over the Laptev Sea and East Siberian Sea, leading to the 
melting of the sea ice. The linkage between the meridional heat transport and atmospheric warming is, 
however, less clear over the Atlantic side of the Arctic, but the sea ice melting is smaller anyway (Figure 2a). 
Figure 3d shows a reduction of the upward solar radiation at the surface, likely due to the sea ice melting, 
reflecting a positive ice albedo feedback.

Therefore, the LRF and q-flux perturbation experiments reveal the most excitable mode of the September 
Arctic sea ice, which is maximized over the Pacific side of the Arctic. The associated most effective q-flux 
forcing is complex in its spatial pattern and its corresponding precipitation shows a dominant dipole pattern 
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in the tropics with an increased precipitation over the western and central tropical Pacific and a decreased 
precipitation over the Maritime Continent. The tropical precipitation pattern likely drives a Rossby wave 
train propagating toward higher latitudes, resulting in a trough over high latitude North Pacific ocean and a 
ridge over the Pacific side of the Arctic extending to northwestern Canada. We find our wave train response 
in the tropical to midlatitude western Pacific region similar to the Pacific-Japan pattern, in which the sum-
mertime anticyclonic anomalies over the midlatitude Far East is linked to enhanced convective activity near 
the Philippines and its resulting teleconnection pattern (e.g., Kosaka & Nakamura, 2006, 2010; Nitta, 1987; 
Tsuyuki & Kurihara, 1989). However, since most of the Pacific-Japan pattern studies focus on the tropical to 
midlatitude region, its influence on the Arctic is not clear.

Finally we show that the neutral vector, which is constructed based on dynamics, is, in fact, in good agree-
ment with the statistical leading pattern of September Arctic sea ice identified from the Maximum Covari-
ance Analysis (MCA). To recapitulate, MCA isolates pairs of spatial patterns and corresponding time series 
by performing the eigenanalysis on the temporal covariance matrix between two space-time varying varia-
bles, and MCA mode 1 explains the maximum fraction of the covariance that is, obtained from the leading 
mode of the singular value decomposition of the covariance matrix. Figure 4 shows the MCA mode 1 be-
tween the September Arctic sea ice and JJA tropical SST as well as associated correlation with JJA 200 hPa 
geopotential height and tropical precipitation calculated from a 1800-year long CESM1 pre-industrial simu-
lation. Since the conventional normalization for MCA left and right singular vectors (i.e., multiplying by the 
standard deviation of the time series) is different from the normalization for neutral vector, for simplicity, 
we show the non-normalized results for MCA and compare the MCA and neutral vector results in patterns. 
The CESM2, which is the latest generation of the coupled climate models developed at NCAR and includes 
substantial model developments and improvements (Danabasoglu et al., 2020), shows consistent MCA re-
sults (Figure S3). Similar to the neutral vector (Figure 2a), the statistical leading mode of September Arctic 
sea ice (Figure 4a) is maximized over the Pacific side of the Arctic, except that the pattern is slightly shifted 
westward and extends to the Kara Sea compared to the neutral vector. A similar wave train pattern is also 
found for 200 hPa geopotential height (Figure 4a) with a positive anomaly over the Northern Hemisphere 
tropical and subtropical region, a negative anomaly over the North Pacific ocean and a positive anomaly 
over the Pacific side of the Arctic, except that the midlatitude negative height anomaly spans over a larger 
area in comparison to the neutral vector results (Figure 2d). In addition, both the tropical SST and precip-
itation (Figure 4b) resemble the results from the neutral vector (Figures 2e and 2f). In particular, a dipole 
pattern is found in tropical precipitation with a positive anomaly over the tropical Pacific ocean and the 

WU ET AL.

10.1029/2021GL094189

6 of 9

Figure 3. The associated June-July-August (a) 300–850 hPa averaged total meridional heat flux, (b) 300–850 hPa averaged temperature, (c) surface downward 
longwave (LW) radiation, and (d) surface upward shortwave (SW) radiation with the neutral vector.
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Philippine Sea and a negative anomaly over the Maritime Continent. In comparison to the neutral vector 
results, the MCA shows a more dominant precipitation increase over the equatorial Pacific than off-equa-
torial tropical Pacific west of the Philippine Sea, likely due to the ocean dynamics in fully coupled CESM 
and dominant oceanic forcing over the equatorial Pacific. In summary, this overall agreement suggests that 
the statistical leading pattern of summertime atmospheric circulation and September Arctic sea ice indeed 
reflects the fundamental, dynamical, and more importantly causal relationship between the two.

4. Conclusion and Discussions
In this study, we apply the linear response function to investigate the most excitable mode of the Septem-
ber Arctic sea ice, which preferentially occurs over the Pacific side of the Arctic. The corresponding most 
effective remote forcing in driving this mode of Arctic sea ice consists of complex patchy areas of positive 
and negative values of q-flux forcing in the globe. The signs of q-flux forcing indicate that positive q-flux 
forcing in some regions while negative forcing in others corresponds to an overall melting of the Arctic sea 
ice. The corresponding atmospheric fields reveal interesting features related to atmospheric teleconnection 
patterns, including a positive IPO-like SST pattern and an increase of precipitation over the western tropical 
and subtropical Pacific ocean while a decrease over the Maritime Continent, which drives a Rossby wave 
train propagating toward the higher latitudes and results in a ridge anomaly over the Pacific side of the 
Arctic. The resulting poleward atmospheric heat transport and enhanced downward longwave radiation 
likely lead to the sea ice melting in the region. Furthermore, a good agreement is found between the neutral 
vector and the statistical leading pattern of the MCA from a long pre-industrial simulation. This agreement 
not only supports the usefulness and robustness of the linear response function method but also confirms 
the fundamental, dynamical and causal relationship between summertime atmospheric circulation and 
September Arctic sea ice in climate models.

WU ET AL.

10.1029/2021GL094189

7 of 9

Figure 4. Maximum Covariance Analysis (MCA) mode 1 of September Arctic sea ice and June-July-August (JJA) 
tropical SST in the 1800-year long CESM1 pre-industrial control simulation. (a) September Arctic sea ice concentration 
(left singular vector, color shadings, orthogonal and unitless because of SVD analysis) and associated correlation with 
JJA Z200 (contours with contour interval of 0.1). (b) SST (right singular vector, contours with contour interval of 0.015, 
orthogonal and unitless because of SVD analysis) and correlation with JJA tropical precipitation (color shadings, 
unitless). For the result of Z200, it's calculated as the correlation between the time series associated with sea ice mode 
1 and the original Z200 data. And similarly for precipitation. Red contours indicate positive values and blue contours 
indicate negative values.
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Our study emphasizes the importance of summertime atmospheric teleconnection in determining the Sep-
tember Arctic sea ice variability in climate models, especially the role of the western and central tropical 
Pacific. In future projections, although state-of-the-art climate models project a reduced zonal gradient of 
SST over the equatorial Pacific with rising greenhouse gases (e.g., Coats & Karnauskas, 2017), studies have 
challenged the model results and argued a strengthening of the tropical Pacific zonal SST gradient based 
on the fundamental dynamics and thermodynamics of the tropical ocean-atmosphere interaction (Seager 
et al., 2019). If tropical Pacific zonal SST gradient were indeed to strengthen in the future climate, it would 
likely result in significant global consequences that would deviate from current climate model projections, 
including a different rate of Arctic sea ice melting (Screen & Deser, 2019).

Our study reveals the most excitable mode of the September Arctic sea ice and the most effective remote 
forcing in causing the mode in CESM. This is a mode that is, most likely to be excited and exhibits the larg-
est response to forcing and thus plays an important role in understanding and interpreting both the natural 
variability and anthropogenic change of the Arctic sea ice. It is noted that in this set of q-flux perturbation 
experiments, the nonlinear component is found to be comparable to the linear component in magnitude 
(Lu et al., 2020), and its resulting possible impact on the accuracy of the linear component might deserve 
further investigation. We also note that the neutral vector and optimal forcing are derived from a single 
atmospheric general circulation model coupled to a slab ocean model and a thermodynamic sea ice model, 
so the results could possibly be affected by model biases and it might be worth repeating the exercise with 
other atmospheric models and coupled to a full ocean and sea ice model as sea ice dynamics are important 
in driving sea ice variability (Ogi et al., 2010). In addition, future work will extend the analysis to other sea-
sons over the Arctic as well as the Antarctica.

Data Availability Statement
The data produced for and analyzed in this paper are available through Columbia University Academic 
Commons. https://academiccommons.columbia.edu/doi/10.7916/d8-vpgv-5h91.
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